Assessment of the vertical dimension of the glottic wave: Its clinical value

By Mette Pedersen MD Hon. Prof. IBC Cambridge University students Copenhagen Denmark: Sanila Mahmood, Anders Jønsson, Mohammad Shezad Mahmood, Anne Alexius Agersted

Refined diagnoses of laryngeal disorders

Instead of stroboscopy with an average of 25 pictures pr second:

- High speed films
- Kymography and electroglottography
- Phonovibrograms
- The prospects of calculation of "Stiffness"
- (and others as Optical coherence tomography and Narrow band imaging)

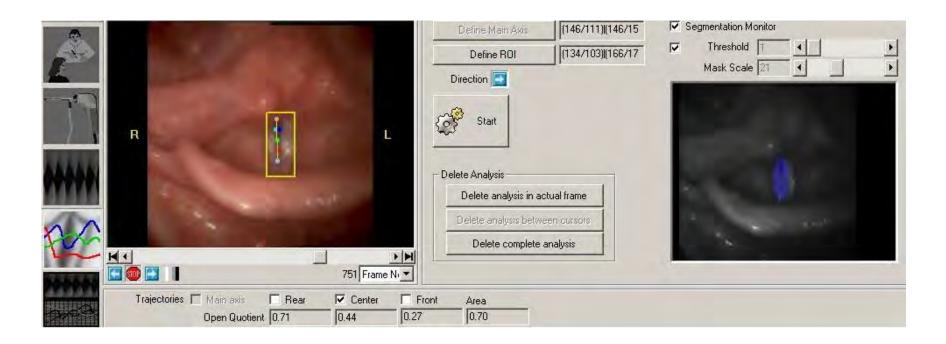
High speed films

Superior to clinical laryngo-stroboscopy in areas of voice diagnostics able to capture 4000 or more images per second data are acquired with a high-speed camera recording in real-time during phonation of a vowel.

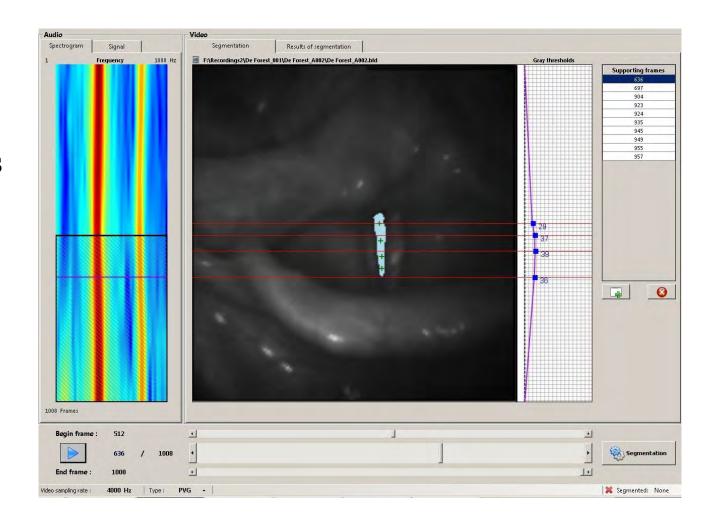
A rigid endoscope (90° optic, 9-mm diameter) is placed into the oropharynx coupled to a high-speed camera, flexible endoscope can also be used.

High speed endocam system

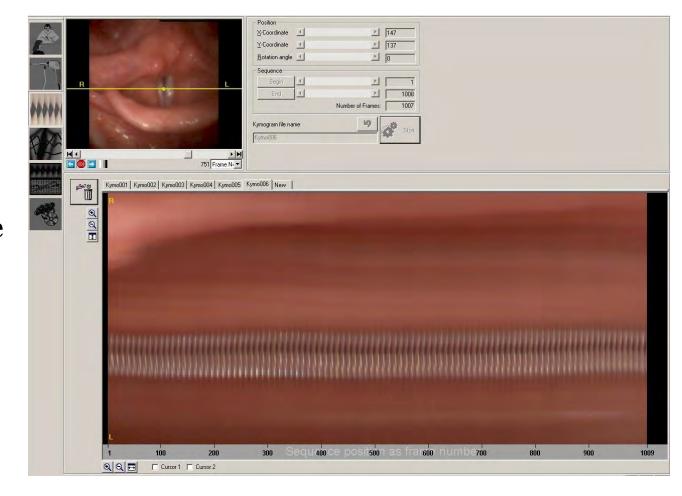
With the High Speed Endocam system* there
has been developed a software reproduction of
the stiffness of single vocal fold movements with
the "Glottis Analysis Tools"


by M. Döllinger et al.

^{*} Wolf Ltd. HRES Endocam 5562 analytic system (Richard Wolf GmbH, Pforzheimer Strasse 32, 75438 Knittlingen, Germany)


High speed films

Segmentation of the open quotients can be calculated in front – center – rear area –between the vocal folds.


High speed films and mean stiffness

Segmentation:
The setup for
calculation of
measurements
of mean
stiffness of the
Glottal Area
Wave form
(GAW)

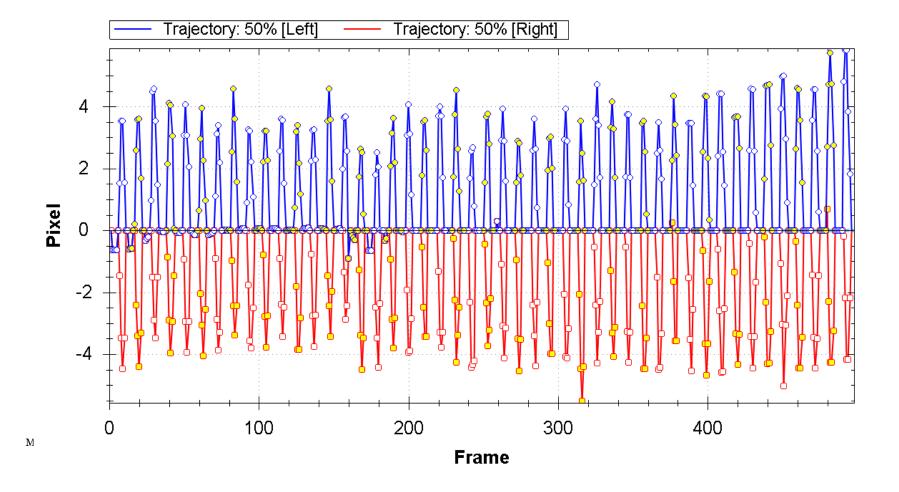
High speed films and kymography

Kymography shows single movement of the vocal folds from above – here they are regular

Difference in stiffness

- A difference in stiffness of the vocal folds is measured
- The objective was to evaluate the new method based on software reproduction of the vocal fold movements, that is included in - Glottis Analysis Tools - used together with highspeed films.

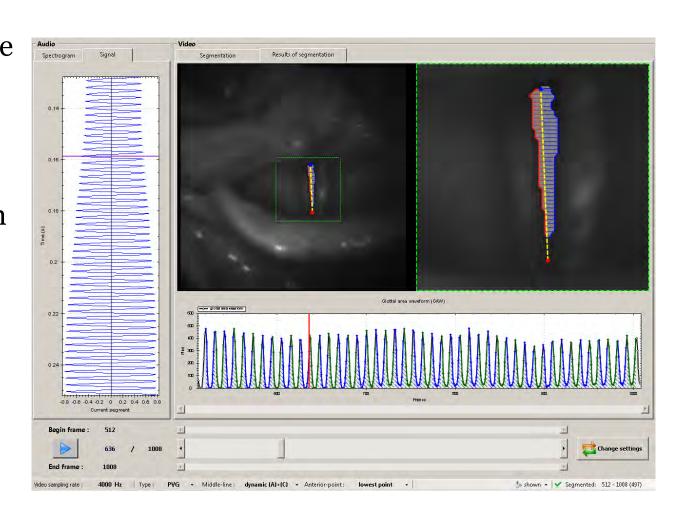
The formula for stiffness


$$Stiffness = \frac{max_{t \in T_i(s(t))}}{A_i}$$

Where T_i is the duration of i^{th} cycle in miliseconds (ms), A_i is the dynamic range (max-min) for i^{th} cycle and s(t) is the magnitude of the 1^{st} derivative of considered signal for i^{th} cycle (t C T_i).

Trajectories

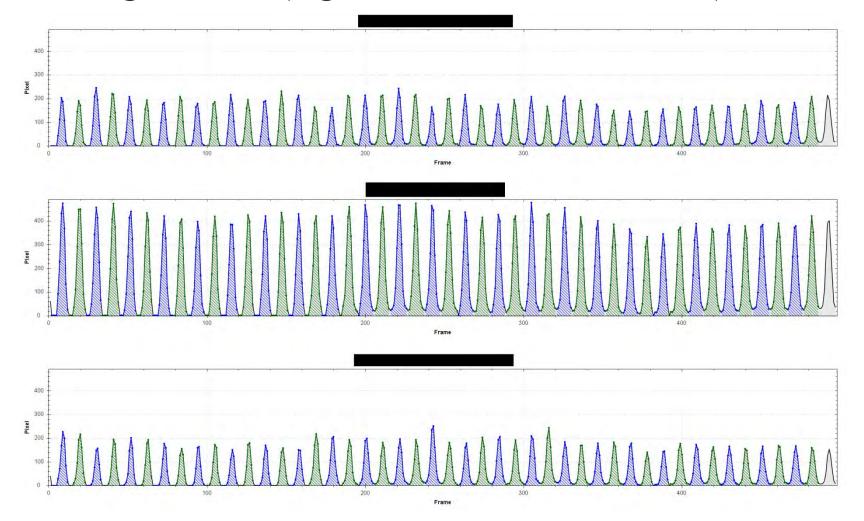
- Trajectories are like kymograms
- The diagrams show the vocal folds in a 50% distance from the posterior border (therefore called [Traj-50%])


Trajectories of a contest winning female

Highspeed films and phonovibrograms

The results* of the segmentation. The Glottal Area Wave form (GAW) are shown with frames on the horizental axis and pixel on the vertical axis

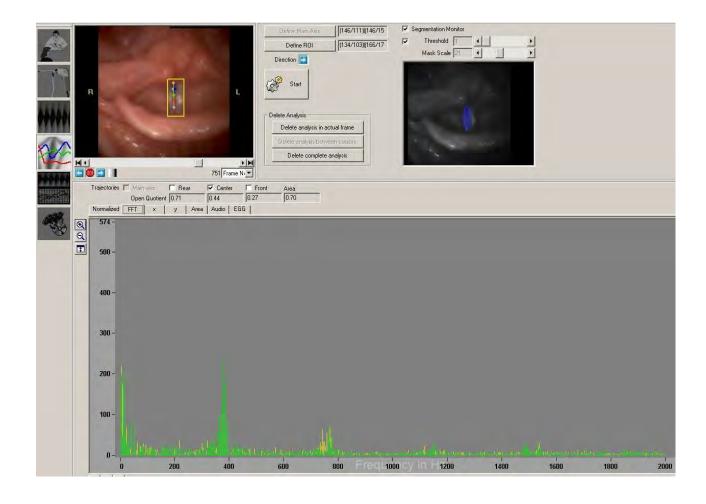
*a contest winning female



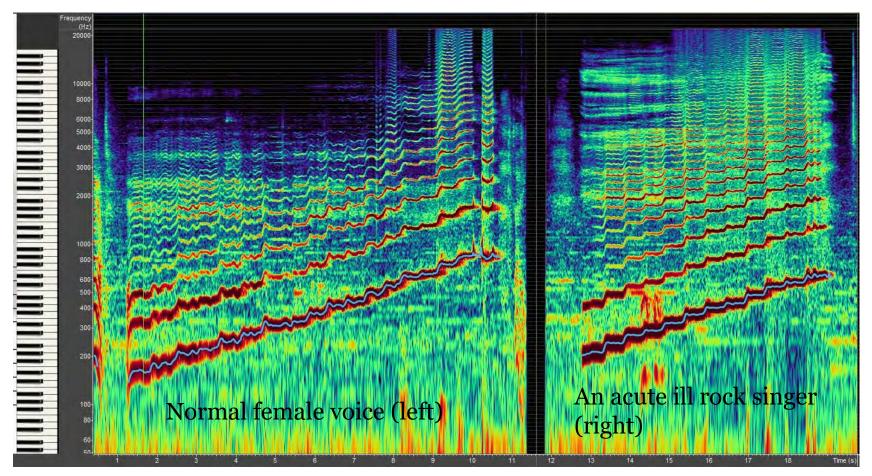
High speed films and phonovibrograms

Phonovibrogram of a contest winning female, showing the regularity of single movement of the right and left vocal folds

Glottal Area Waveform cycles of a contest winning female (right - left and combined)


Calculated measures for the signals of Glottal Area Waveform and Glottal Trajectories - note the standard deviations of the mean which was 0,38 out of 42 measured cycles

From a contest winning female


			[MEAN]	[STD]	[MIN]	[MAX]
Stiffness	[GAW]		0,38	0,02	0,333	0,413
Stiffness	[GAW]	[Left]	0,391	0,024	0,338	0,432
Stiffness	[GAW]	[Right]	0,395	0,024	0,352	0,451
Stiffness	[Traj-50%]	[Left]	0,483	0,043	0,371	0,625
Stiffness	[Traj-50%]	[Right]	0,486	0,029	0,392	0,513

Spectral analysis up to 2000 Hz

The analysis is based on high speed films of 4000 pictures pr second

Further development includes e.g.comparison of normal and acute ill voices with overtones and highspeed films

The normal female voice has overtones and a fundamental frequency up to about 850 Hz. The pathological voice had no tones over 600 Hz.

Conclusions

- We are focusing on high quality voices compared with other voices and pathology.
- In this study we presented a quantified measure of the vocal fold stiffness calculated from individual vocal fold cycles with average measures, standard deviations —and minimum and maximum values.
- It is our impression that the system —" Glottis Analysis Tools" stiffness calculations can be used clinically to differentiate between high and low quality voices.
- In the future, stiffness might be used to determine the treatment effect in voice pathology.

• Find the slides on: http://www.mpedersen.org

Thank you for your attention!

References

- Deliyski, D., Hillman, R., 2010. State of the art laryngeal imaging: Research and clinical implications. Curr. Opin. Otolaryngol. Head Neck Surg. 18, 147-152.
- Pedersen, M., Eeg, M., Jønsson, A., 2013. Video stroboscopy and high-speed films of pathological voices. Presented at 4th Symposium of Advanced Voice Assessment, Copenhagen.
- Döllinger, M., Hoppe, U., Hettlich, F., Lohscheller, J., Schubert, S., Eysholdt, U., 2002. Vibration parameter extraction from endoscopic image series of the vocal folds. IEEE Trans. Biomed. Eng. 49, 773-781.
- Lohscheller, J., Eysholdt, U., Toy, H., Döllinger, M., 2008. Phonovibrography: mapping high-speed movies of vocal fold vibrations into 2-d diagrams for visualizing and analyzing the underlying laryngeal dynamics. IEEE Trans. Med. Imaging 27, 300-309.
- Pedersen, M., Eeg, M., Jønsson, A., Mahmood, S., 2015. Chapter 8. Working with Wolf Ltd. HRES Endocam 5562 analytic system for high-speed recordings.
- Pedersen M., Eeg M., Agersted AA., Jønsson A., 2015. Can phonovibrograms be used in clinical voice pathology? JJ Otolaryn. 2015, 1(1): 005.
- Pedersen M., Akram BH., Agersted AA., 2015 Technology advances in diagnostics of vocal folds function. Otolaryngology 5: 191.